Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Health Perspect ; 132(4): 45001, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38592230

RESUMO

BACKGROUND: The European Food Safety Authority (EFSA) recommended lowering their estimated tolerable daily intake (TDI) for bisphenol A (BPA) 20,000-fold to 0.2 ng/kg body weight (BW)/day. BPA is an extensively studied high production volume endocrine disrupting chemical (EDC) associated with a vast array of diseases. Prior risk assessments of BPA by EFSA as well as the US Food and Drug Administration (FDA) have relied on industry-funded studies conducted under good laboratory practice protocols (GLP) requiring guideline end points and detailed record keeping, while also claiming to examine (but rejecting) thousands of published findings by academic scientists. Guideline protocols initially formalized in the mid-twentieth century are still used by many regulatory agencies. EFSA used a 21st century approach in its reassessment of BPA and conducted a transparent, but time-limited, systematic review that included both guideline and academic research. The German Federal Institute for Risk Assessment (BfR) opposed EFSA's revision of the TDI for BPA. OBJECTIVES: We identify the flaws in the assumptions that the German BfR, as well as the FDA, have used to justify maintaining the TDI for BPA at levels above what a vast amount of academic research shows to cause harm. We argue that regulatory agencies need to incorporate 21st century science into chemical hazard identifications using the CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity) nonguideline academic studies in a collaborative government-academic program model. DISCUSSION: We strongly endorse EFSA's revised TDI for BPA and support the European Commission's (EC) apparent acceptance of this updated BPA risk assessment. We discuss challenges to current chemical risk assessment assumptions about EDCs that need to be addressed by regulatory agencies to, in our opinion, become truly protective of public health. Addressing these challenges will hopefully result in BPA, and eventually other structurally similar bisphenols (called regrettable substitutions) for which there are known adverse effects, being eliminated from all food-related and many other uses in the EU and elsewhere. https://doi.org/10.1289/EHP13812.


Assuntos
Compostos Benzidrílicos , Fenóis , Humanos , Inocuidade dos Alimentos , Nível de Efeito Adverso não Observado , Revisões Sistemáticas como Assunto
2.
Biol Reprod ; 110(2): 310-328, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37883444

RESUMO

The fetal brain of the mouse is thought to be dependent upon the placenta as a source of serotonin (5-hydroxytryptamine; 5-HT) and other factors. How factors reach the developing brain remains uncertain but are postulated here to be part of the cargo carried by placental extracellular vesicles (EV). We have analyzed the protein, catecholamine, and small RNA content of EV from mouse trophoblast stem cells (TSC) and TSC differentiated into parietal trophoblast giant cells (pTGC), potential primary purveyors of 5-HT. Current studies examined how exposure of mouse neural progenitor cells (NPC) to EV from either TSC or pTGC affect their transcriptome profiles. The EV from trophoblast cells contained relatively high amounts of 5-HT, as well as dopamine and norepinephrine, but there were no significant differences between EV derived from pTGC and from TSC. Content of miRNA and small nucleolar (sno)RNA, however, did differ according to EV source, and snoRNA were upregulated in EV from pTGC. The primary inferred targets of the microRNA (miRNA) from both pTGC and TSC were mRNA enriched in the fetal brain. NPC readily internalized EV, leading to changes in their transcriptome profiles. Transcripts regulated were mainly ones enriched in neural tissues. The transcripts in EV-treated NPC that demonstrated a likely complementarity with miRNA in EV were mainly up- rather than downregulated, with functions linked to neuronal processes. Our results are consistent with placenta-derived EV providing direct support for fetal brain development and being an integral part of the placenta-brain axis.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , Gravidez , Feminino , Animais , Camundongos , Serotonina/metabolismo , Placenta/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Encéfalo/metabolismo , Trofoblastos/metabolismo , Células-Tronco/metabolismo
3.
mSystems ; 7(4): e0033622, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35862801

RESUMO

Opioid drugs are commonly prescribed analgesic to pregnant women. Direct exposure to such drugs may slow gut motility, alter gut permeability, and affect the gut microbiome. While such drugs affect gut microbiome in infants, no study to date has determined whether developmental exposure to such drugs results in longstanding effects on gut microbiota and correspondingly on host responses. We hypothesized developmental exposure to oxycodone (OXY) leads to enduring effects on gut microbiota and such changes are associated with adult neurobehavioral and metabolic changes. Female mice were treated daily with 5 mg OXY/kg or saline solution (control [CTL]) for 2 weeks prior to breeding and then throughout gestation. Male and female offspring pups were weaned, tested with a battery of behavioral and metabolic tests, and fecal boli were collected adulthood (120 days of age). In females, relative abundance of Butyricimonas spp., Bacteroidetes, Anaeroplasma spp., TM7, Enterococcus spp., and Clostridia were greater in OXY versus CTL individuals. In males, relative abundance of Coriobacteriaceae, Roseburia spp., Sutterella spp., and Clostridia were elevated in OXY exposed individuals. Bacterial changes were also associated with predictive metabolite pathway alterations that also varied according to sex. In males and females, affected gut microbiota correlated with metabolic but not behavioral alterations. The findings suggest that developmental exposure to OXY leads to lasting effects on adult gut microbiota that might affect host metabolism, possibly through specific bacterial metabolites or other bacterial-derived products. Further work is needed to characterize how developmental exposure to OXY affects host responses through the gut microbiome. IMPORTANCE This is the first work to show in a rodent model that in utero exposure to an opioid drug can lead to longstanding effects on the gut microbiota when examined at adulthood. Further, such bacterial changes are associated with metabolic host responses. Given the similarities between rodent and human microbiomes, it raises cause for concern that similar effects may become evident in children born to mothers taking oxycodone and other opioid drugs.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Adulto , Criança , Masculino , Feminino , Animais , Camundongos , Gravidez , Oxicodona/efeitos adversos , Analgésicos Opioides/efeitos adversos , Comportamento Social , Bactérias
4.
Biol Reprod ; 106(5): 826-834, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35020819

RESUMO

Bisphenol A (BPA), an endocrine-disrupting chemical, is used to produce a wide variety of plastic and common house-hold items. Therefore, there is potential continual exposure to this compound. BPA exposure has been linked to certain placenta-associated obstetric complications such as preeclampsia, fetal growth restriction, miscarriage, and preterm birth. However, how BPA exposure results in these disorders remains uncertain. Hence, we have herein summarized the reported impacts of BPA on the morphology and metabolic state of the placenta and have proposed mechanisms by which BPA affects placentation, potentially leading to obstetric complications. Current findings suggest that BPA induces pathological changes in the placenta and disrupts its metabolic activities. Based on exposure concentrations, BPA can elicit apoptotic or anti-apoptotic signals in the trophoblasts, and can exaggerate trophoblast fusion while inhibiting trophoblast migration and invasion to affect pregnancy. Accordingly, the usage of BPA products by pregnant women should be minimized and less harmful alternative chemicals should be explored and employed where possible.


Assuntos
Disruptores Endócrinos , Nascimento Prematuro , Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Feminino , Humanos , Recém-Nascido , Fenóis/toxicidade , Placenta/metabolismo , Gravidez , Nascimento Prematuro/metabolismo
5.
Biol Reprod ; 106(4): 676-686, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35024817

RESUMO

Opioid drugs are analgesics increasingly being prescribed to control pain associated with a wide range of causes. Usage of pregnant women has dramatically increased in the past decades. Neonates born to these women are at risk for neonatal abstinence syndrome (also referred to as neonatal opioid withdrawal syndrome). Negative birth outcomes linked with maternal opioid use disorder include compromised fetal growth, premature birth, reduced birthweight, and congenital defects. Such infants require lengthier hospital stays necessitating rising health care costs, and they are at greater risk for neurobehavioral and other diseases. Thus, it is essential to understand the genesis of such disorders. As the primary communication organ between mother and conceptus, the placenta itself is susceptible to opioid effects but may be key to understanding how these drugs affect long-term offspring health and potential avenue to prevent later diseases. In this review, we will consider the evidence that placental responses are regulated through an endogenous opioid system. However, maternal consumption of opioid drugs can also bind and act through opioid receptors express by trophoblast cells of the placenta. Thus, we will also discuss the current human and rodent studies that have examined the effects of opioids on the placenta. These drugs might affect placental hormones associated with maternal recognition of pregnancy, including placental lactogens and human chorionic gonadotropin in rodents and humans, respectively. A further understanding of how such drugs affect the placenta may open up new avenues for early diagnostic and remediation approaches.


Assuntos
Síndrome de Abstinência Neonatal , Transtornos Relacionados ao Uso de Opioides , Complicações na Gravidez , Analgésicos Opioides/efeitos adversos , Feminino , Humanos , Recém-Nascido , Síndrome de Abstinência Neonatal/complicações , Síndrome de Abstinência Neonatal/tratamento farmacológico , Transtornos Relacionados ao Uso de Opioides/complicações , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Transtornos Relacionados ao Uso de Opioides/prevenção & controle , Placenta , Gravidez , Complicações na Gravidez/tratamento farmacológico
6.
Epigenomics ; 13(24): 1909-1919, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34841895

RESUMO

Aim: To determine small RNA expression changes in mouse placenta induced by bisphenol A (BPA) exposure. Methods: Exposing female mice to BPA two weeks prior to conception through gestational day 12.5; whereupon fetal placentas were collected, frozen in liquid nitrogen and stored at -80°C. Small RNAs were isolated and used for small RNA-sequencing. Results: 43 small RNAs were differentially expressed. Target mRNAs were closely aligned to those expressed by thymus and brain, and pathway enrichment analyses indicated that such target mRNAs regulate neurogenesis and associated neurodevelopment processes. Conclusions: BPA induces several small RNAs in mouse placenta that might provide biomarkers for BPA exposure. Further, the placenta might affect fetal brain development through the secretion of miRNAs.


Assuntos
Disruptores Endócrinos , MicroRNAs , Animais , Compostos Benzidrílicos/toxicidade , Feminino , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Fenóis/toxicidade , Placenta/metabolismo , Gravidez
7.
Bone Rep ; 15: 101147, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34820485

RESUMO

Bisphenol-A (BPA) and bisphenol-S (BPS) are endocrine disrupting chemicals (EDCs) found primarily in plastics. Estrogen is a primary hormonal regulator of skeletal growth and development; however, the impact of gestational BPA or BPS exposure on skeletal health of offspring remains relatively unknown. Here, adult female mice were randomized into three treatment groups: 200 µg BPA/kg BW (BPA), 200 µg BPS/kg BW (BPS) or control (CON). Animals were then further randomized to exercising (EX) or sedentary (SED) groups. Treatment continued through mating, gestation, and lactation. One male offspring from each dam (n = 6-8/group) was assessed at 16 weeks of age to evaluate effects of EDC exposure on the adult skeleton. Cortical geometry of the mid-diaphysis and trabecular microarchitecture of the distal femur were assessed via micro-CT. Biomechanical strength and mineral apposition rate of the femoral diaphysis were assessed via three-point bending and dynamic histomorphometry, respectively. Two-factor ANOVA or ANCOVA were used to determine the effects of maternal EX and BPA or BPS on trabecular and cortical bone outcomes. Maternal EX led to a significant decrease in body fat percentage and bone stiffness, independent of EDC exposure. Offspring exposed to BPA had significantly lower trabecular bone volume, trabecular number, connectivity density, cortical thickness, and greater trabecular spacing compared to BPS or CON animals. In conclusion, gestational BPA, but not BPS, exposure negatively impacted trabecular microarchitecture and cortical geometry in adult male offspring. If these findings translate to humans, this could have significant public health impacts on expecting women or those seeking to become pregnant.

8.
Front Cell Dev Biol ; 9: 723656, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631709

RESUMO

The conceptus is most vulnerable to developmental perturbation during its early stages when the events that create functional organ systems are being launched. As the placenta is in direct contact with maternal tissues, it readily encounters any xenobiotics in her bloodstream. Besides serving as a conduit for solutes and waste, the placenta possesses a tightly regulated endocrine system that is, of itself, vulnerable to pharmaceutical agents, endocrine disrupting chemicals (EDCs), and other environmental toxicants. To determine whether extrinsic factors affect placental function, transcriptomics and other omics approaches have become more widely used. In casting a wide net with such approaches, they have provided mechanistic insights into placental physiological and pathological responses and how placental responses may impact the fetus, especially the developing brain through the placenta-brain axis. This review will discuss how such omics technologies have been utilized to understand effects of EDCs, including the widely prevalent plasticizers bisphenol A (BPA), bisphenol S (BPS), and phthalates, other environmental toxicants, pharmaceutical agents, maternal smoking, and air pollution on placental gene expression, DNA methylation, and metabolomic profiles. It is also increasingly becoming clear that miRNA (miR) are important epigenetic regulators of placental function. Thus, the evidence to date that xenobiotics affect placental miR expression patterns will also be explored. Such omics approaches with mouse and human placenta will assuredly provide key biomarkers that may be used as barometers of exposure and can be targeted by early mitigation approaches to prevent later diseases, in particular neurobehavioral disorders, originating due to placental dysfunction.

9.
Bone Rep ; 15: 101136, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34632005

RESUMO

Bisphenol-A (BPA) and bisphenol-S (BPS) are estrogen disrupting chemicals (EDCs) found in the environment and common household items. Estrogen is a primary hormonal regulator of bone growth and development; however, the impact of gestational BPA or BPS exposure on skeletal health of offspring remains relatively unknown. In this longitudinal study, adult female mice were randomized into three groups: 200 µg BPA/kg BW (BPA), 200 µg BPS/kg BW (BPS) or control (CON). Animals in each group were further randomized to exercise treatment (EX) or sedentary (SED) control, resulting in six overall groups. BPA/BPS/CON and EX/SED treatment were initiated prior to mating and continued through mating, gestation, and lactation. One female offspring from each dam (n = 6/group) was assessed at 17 weeks of age to evaluate effects of EDC exposure on the adult skeleton. Cortical geometry of the mid-diaphysis and trabecular microarchitecture of the distal femur were assessed via micro-computed tomography. Biomechanical strength and mineral apposition rate of the femoral diaphysis were assessed via three-point bending and dynamic histomorphometry, respectively. Sclerostin expression was measured using immunohistochemistry. Two-factor ANOVA or ANCOVA were used to determine the effects of maternal exercise and BPA or BPS exposure on trabecular and cortical bone outcomes, respectively. Consistent with prior studies, there were no significant differences in body weight, femoral length, cortical geometry, trabecular microarchitecture, or biomechanical strength between groups in female offspring. In conclusion, gestational BPA exposure and maternal exercise have minimal impact on skeletal outcomes in female adult offspring.

10.
Placenta ; 115: 158-168, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34649169

RESUMO

INTRODUCTION: The mouse placenta accumulates and possibly produces serotonin (5-hydroxytryptamine; 5-HT) in parietal trophoblast giant cells (pTGC) located at the interface between the placenta and maternal deciduum. However, the roles of 5-HT in placental function are unclear. This lack of information is unfortunate, given that selective serotonin-reuptake inhibitors are commonly used to combat depression in pregnant women. The high affinity 5-HT transporter SLC6A4 (also known as SERT) is the target of such drugs and likely controls much of 5-HT uptake into pTGC and other placental cells. We hypothesized that ablation of the Slc6a4 gene would result in morphological changes correlated with placental gene expression changes, especially for those involved in nutrient acquisition and metabolism, and thereby, provide insights into 5-HT placental function. METHODS: Placentas were collected at embryonic age (E) 12.5 from Slc6a4 knockout (KO) and wild-type (WT) conceptuses. Histological analyses, RNAseq, qPCR, and integrative correlation analyses were performed. RESULTS: Slc6a4 KO placentas had a considerable increased pTGC to spongiotrophoblast area ratio relative to WT placentas and significantly elevated expression of genes associated with intestinal functions, including nutrient sensing, uptake, and catabolism, and blood clotting. Integrative correlation analyses revealed upregulation of many of these genes was correlated with pTGC layer expansion. One other key gene was dopa decarboxylase (Ddc), which catalyzes conversion of L-5-hydroxytryptophan to 5-HT. DISCUSSION: Our studies possibly suggest a new paradigm relating to how 5-HT operates in the placenta, namely as a factor regulating metabolic functions and blood coagulation. We further suggest that pTGC might be functional analogs of enterochromaffin 5-HT-positive cells of the intestinal mucosa, which regulate similar activities within the gut. Further work, including proteomics and metabolomic studies, are needed to buttress our hypothesis.


Assuntos
Placenta/fisiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/deficiência , Serotonina/fisiologia , Animais , Dopa Descarboxilase/genética , Dopa Descarboxilase/metabolismo , Feminino , Células Gigantes/fisiologia , Intestinos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placenta/química , Placenta/citologia , Gravidez , RNA/análise , Análise de Sequência de RNA , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/fisiologia , Trofoblastos/citologia , Regulação para Cima
11.
Horm Behav ; 136: 105043, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34507054

RESUMO

Endocrine disrupting chemicals, such as bisphenol A (BPA) and ethinylestradiol (EE2), are detected in the marine environment from plastic waste and wastewater effluent. However, their impact on reproduction in sexually labile coral reef fish is unknown. The objective of this study was to determine impacts of environmentally relevant concentrations of BPA and EE2 on behavior, brain gene expression, gonadal histology, sex hormone profile, and plasma vitellogenin (Vtg) levels in the anemonefish, Amphiprion ocellaris. A. ocellaris display post-maturational sex change from male to female in nature. Sexually immature, male fish were paired together and fed twice daily with normal food (control), food containing BPA (100 µg/kg), or EE2 (0.02 µg/kg) (n = 9 pairs/group). Aggression toward an intruder male was measured at 1, 3, and 6 months. Blood was collected at 3 and 6 months to measure estradiol (E2), 11-ketotestosterone (11-KT), and Vtg. At the end of the study, fish were euthanized to assess gonad morphology and to measure expression of known sexually dimorphic genes in the brain. Relative to control, BPA decreased aggression, altered brain transcript levels, increased non-vitellogenic and vitellogenic eggs in the gonad, reduced 11-KT, and increased plasma Vtg. In two BPA-treated pairs, both individuals had vitellogenic eggs, which does not naturally occur. EE2 reduced 11-KT in subordinate individuals and altered expression of one transcript in the brain toward the female profile. Results suggest BPA, and to a lesser extent EE2, pollution in coral reef ecosystems could interfere with normal reproductive physiology and behavior of the iconic sexually labile anemonefish.


Assuntos
Recifes de Corais , Estradiol , Animais , Compostos Benzidrílicos , Encéfalo , Ecossistema , Estradiol/farmacologia , Feminino , Peixes , Hormônios Esteroides Gonadais , Gônadas , Masculino , Fenóis , Vitelogeninas/genética
12.
Curr Opin Endocr Metab Res ; 19: 41-45, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34423175

RESUMO

Endocrine disrupting chemicals (EDCs) that act as xenoestrogens are natural and synthetic chemicals widely present in food products, industrial products, and the environment. Such compounds can activate or inhibit normal hormonal pathways by binding to steroid and non-steroid receptors. It is becomingly apparent that resident bacteria in the gut and elsewhere in the body can dramatically influence host responses. As such, increasing number of studies have examined how EDCs affect the gut microbiome in a range of animal species. This review article will examine what is known about how various xenoestrogens, including bisphenol A (BPA), phthalates, and phytoestrogens, affect the gut microbiome in vertebrate species, any known secondary host effects, such as through alteration of gut metabolites, and future directions in the field.

13.
Biol Reprod ; 105(5): 1126-1139, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34344022

RESUMO

Histone proteins undergo various modifications that alter chromatin structure, including addition of methyl groups. Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that methylates lysine residue 27, and thereby suppresses gene expression. EZH2 plays integral roles in the uterus and other reproductive organs. We have previously shown that conditional deletion of uterine EZH2 results in increased proliferation of luminal and glandular epithelial cells, and RNA-seq analyses reveal several uterine transcriptomic changes in Ezh2 conditional (c) knockout (KO) mice that can affect estrogen signaling pathways. To pinpoint the origin of such gene expression changes, we used the recently developed spatial transcriptomics (ST) method with the hypotheses that Ezh2cKO mice would predominantly demonstrate changes in epithelial cells and/or ablation of this gene would disrupt normal epithelial/stromal gene expression patterns. Uteri were collected from ovariectomized adult WT and Ezh2cKO mice and analyzed by ST. Asb4, Cxcl14, Dio2, and Igfbp5 were increased, Sult1d1, Mt3, and Lcn2 were reduced in Ezh2cKO uterine epithelium vs. WT epithelium. For Ezh2cKO uterine stroma, differentially expressed key hub genes included Cald1, Fbln1, Myh11, Acta2, and Tagln. Conditional loss of uterine Ezh2 also appears to shift the balance of gene expression profiles in epithelial vs. stromal tissue toward uterine epithelial cell and gland development and proliferation, consistent with uterine gland hyperplasia in these mice. Current findings provide further insight into how EZH2 may selectively affect uterine epithelial and stromal compartments. Additionally, these transcriptome data might provide mechanistic understanding and valuable biomarkers for human endometrial disorders with epigenetic underpinnings.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/genética , Camundongos/genética , Transcriptoma , Útero/metabolismo , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Perfilação da Expressão Gênica , Camundongos/metabolismo , Camundongos Knockout
14.
eNeuro ; 8(4)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34312305

RESUMO

Opioid drugs are increasingly being prescribed to pregnant women. Such compounds can also bind and activate opioid receptors in the fetal brain, which could lead to long-term brain and behavioral disruptions. We hypothesized that maternal treatment with oxycodone (OXY), the primary opioid at the center of the current crisis, leads to later neurobehavioral disorders and gene expression changes in the hypothalamus and hippocampus of resulting offspring. Female mice were treated daily with 5 mg OXY/kg or saline solution (control; CTL) for two weeks before breeding and then throughout gestation. Male and female offspring from both groups were tested with a battery of behavioral and metabolic tests to measure cognition, exploratory-like, anxiety-like, voluntary physical activity, and socio-communication behaviors. qPCR analyses were performed for candidate gene expression patterns in the hypothalamus and hippocampus of OXY and CTL derived offspring. Developmental exposure to OXY caused socio-communication changes that persisted from weaning through adulthood. Such offspring also showed cognitive impairments, reduced voluntary physical activity, and weighed more than CTL counterparts. In the hippocampus, prenatal exposure to OXY caused sex-dependent differences in expression of genes encoding opioid receptors and those involved in serotonin signaling. OXY exposure induced changes in neuropeptide hormone expression and the epigenetic modulator, Dnmt3a, in the hypothalamus, which could result in epigenetic changes in this brain region. The findings suggest cause for concern that consumption of OXY by pregnant mothers may result in permanent neurobehavioral changes in their offspring. Further work is needed to determine the potential underpinning epigenetic mechanisms.


Assuntos
Oxicodona , Efeitos Tardios da Exposição Pré-Natal , Animais , Ansiedade , Epigênese Genética , Feminino , Hipocampo , Hipotálamo , Masculino , Camundongos , Oxicodona/efeitos adversos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética
15.
Sci Rep ; 11(1): 6558, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753813

RESUMO

Due to their antimicrobial properties, silver nanoparticles (AgNPs) are used in a wide range of consumer products that includes topical wound dressings, coatings for biomedical devices, and food-packaging to extend the shelf-life. Despite their beneficial antimicrobial effects, developmental exposure to such AgNPs may lead to gut dysbiosis and long-term health consequences in exposed offspring. AgNPs can cross the placenta and blood-brain-barrier to translocate in the brain of offspring. The underlying hypothesis tested in the current study was that developmental exposure of male and female mice to AgNPs disrupts the microbiome-gut-brain axis. To examine for such effects, C57BL6 female mice were exposed orally to AgNPs at a dose of 3 mg/kg BW or vehicle control 2 weeks prior to breeding and throughout gestation. Male and female offspring were tested in various mazes that measure different behavioral domains, and the gut microbial profiles were surveyed from 30 through 120 days of age. Our study results suggest that developmental exposure results in increased likelihood of engaging in repetitive behaviors and reductions in resident microglial cells. Echo-MRI results indicate increased body fat in offspring exposed to AgNPs exhibit. Coprobacillus spp., Mucispirillum spp., and Bifidobacterium spp. were reduced, while Prevotella spp., Bacillus spp., Planococcaceae, Staphylococcus spp., Enterococcus spp., and Ruminococcus spp. were increased in those developmentally exposed to NPs. These bacterial changes were linked to behavioral and metabolic alterations. In conclusion, developmental exposure of AgNPs results in long term gut dysbiosis, body fat increase and neurobehavioral alterations in offspring.


Assuntos
Comportamento/efeitos dos fármacos , Disbiose/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Nanopartículas Metálicas , Prata/efeitos adversos , Animais , Feminino , Humanos , Masculino , Aprendizagem em Labirinto , Testes de Estado Mental e Demência , Metagenoma , Metagenômica/métodos , Nanopartículas Metálicas/química , Camundongos , Modelos Animais , Prata/química
16.
J Neurosci Res ; 99(1): 271-283, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32108381

RESUMO

All mammalian species depend on the placenta, a transient organ, for exchange of gases, nutrients, and waste between the mother and conceptus. Besides serving as a conduit for such exchanges, the placenta produces hormones and other factors that influence maternal physiology and fetal development. To meet all of these adaptations, the placenta has evolved to become the most structurally diverse organ within all mammalian taxa. However, commonalities exist as to how placental responses promote survival against in utero threats and can alter the trajectory of fetal development, in particular the brain. Increasing evidence suggests that reactions of the  placenta to various in utero stressors may lead to long-standing health outcomes, otherwise considered developmental origin of health and disease effects. Besides transferring nutrients and gases, the placenta produces neurotransmitters, including serotonin, dopamine, norepinephrine/epinephrine, that may circulate and influence brain development. Neurobehavioral disorders, such as autism spectrum disorders, likely trace their origins back to placental disturbances. This intimate relationship between the placenta and brain has led to coinage of the term, the placenta-brain-axis. This axis will be the focus herein, including how conceptus sex might influence it, and technologies employed to parse out the effects of placental-specific transcript expression changes on later neurobehavioral disorders. Ultimately, the placenta might provide a historical record of in utero threats the fetus confronted and a roadmap to understand how placenta responses to such encounters impacts the placental-brain-axis. Improved early diagnostic and preventative approaches may thereby be designed to mitigate such placental disruptions.


Assuntos
Encéfalo/fisiologia , Desenvolvimento Fetal/fisiologia , Placenta/fisiologia , Animais , Feminino , Humanos , Masculino , Transtornos do Neurodesenvolvimento/fisiopatologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia
17.
Horm Behav ; 128: 104890, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33221288

RESUMO

Developmental exposure to endocrine disrupting chemicals (EDCs), e.g., bisphenol A (BPA) or genistein (GEN), causes longstanding epigenome effects. MicroRNAs (miRs) regulate which mRNAs will be translated to proteins and thereby serve as the final checkpoint in epigenetic control. Scant amount is known, however, whether EDCs affect neural miRNA (miR) patterns. We aimed to test the hypothesis that developmental exposure of California mice (Peromyscus californicus) to GEN, BPA, or both chemicals influences hypothalamic miR/small RNA profiles and ascertain the extent such biomolecular alterations correlate with behavioral and metabolic changes. California mice were developmentally exposed to GEN (250 mg/kg feed weight, FW), GEN (250 mg/kg FW)+BPA (5 mg/kg FW), low dose (LD) BPA (5 mg/kg FW), or upper dose (UD) BPA (50 mg/kg FW). Adult offspring were tested in a battery of behavioral and metabolic tests; whereupon, mice were euthanized, brains were collected and frozen, small RNAs were isolated from hypothalamic punches, and subsequently sequenced. California mice exposed to one or both EDCs engaged in one or more repetitive behaviors. GEN, LD BPA, and UD BPA altered aspects of ultrasonic and audible vocalizations. Each EDC exposure led to sex-dependent differences in differentially expressed miR/small RNAs with miR7-2, miR146, and miR148a being increased in all female and male EDC exposed groups. Current findings reveal that developmental exposure to GEN and/or BPA affects hypothalamic miR/small RNA expression patterns, and such changes correlate with EDC-induced behavioral and metabolic alterations. miR146 is likely an important mediator and biomarker of EDC exposure in mammals, including humans.


Assuntos
Disruptores Endócrinos , MicroRNAs , Animais , Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Feminino , Hipotálamo , Masculino , Camundongos , MicroRNAs/genética , Peromyscus , Caracteres Sexuais
18.
Placenta ; 100: 96-110, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32891007

RESUMO

INTRODUCTION: Pregnant women are increasingly being prescribed and abusing opioid drugs. As the primary communication organ between mother and conceptus, the placenta may be vulnerable to opioid effects but also holds the key to better understanding how these drugs affect long-term offspring health. We hypothesized that maternal treatment with oxycodone (OXY), the primary opioid at the center of the current crisis, deleteriously affects placental structure and gene expression patterns. METHODS: Female mice were treated daily with 5 mg OXY/kg or saline solution (Control, CTL) for two weeks prior to breeding and until placenta were collected at embryonic age 12.5. A portion of the placenta was fixed for histology, and the remainder was frozen for RNA isolation followed by RNAseq. RESULTS: Maternal OXY treatment reduced parietal trophoblast giant cell (pTGC) area and decreased the maternal blood vessel area within the labyrinth region. OXY exposure affected placental gene expression profiles in a sex dependent manner with female placenta showing up-regulation of many placental enriched genes, including Ceacam11, Ceacam14, Ceacam12, Ceacam13, Prl7b1, Prl2b1, Ctsq, and Tpbpa. In contrast, placenta of OXY exposed males had alteration of many ribosomal proteins. Weighted correlation network analysis revealed that in OXY female vs. CTL female comparison, select modules correlated with OXY-induced placental histological changes. Such associations were lacking in the male OXY vs. CTL male comparison. DISCUSSION: Results suggest OXY exposure alters placental histology. In response to OXY exposure, female placenta responds by upregulating placental enriched transcripts that are either unchanged or downregulated in male placenta. Such changes may shield female offspring from developmental origins of health and disease-based diseases.


Assuntos
Analgésicos Opioides/efeitos adversos , Oxicodona/efeitos adversos , Placenta/efeitos dos fármacos , Animais , Feminino , Masculino , Camundongos , Placenta/metabolismo , Gravidez , Taxa de Gravidez , Razão de Masculinidade , Transcriptoma/efeitos dos fármacos
19.
Reprod Toxicol ; 98: 29-60, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32682780

RESUMO

"Consortium Linking Academic and Regulatory Insights on BPA Toxicity" (CLARITY-BPA) was a comprehensive "industry-standard" Good Laboratory Practice (GLP)-compliant 2-year chronic exposure study of bisphenol A (BPA) toxicity that was supplemented by hypothesis-driven independent investigator-initiated studies. The investigator-initiated studies were focused on integrating disease-associated, molecular, and physiological endpoints previously found by academic scientists into an industry standard guideline-compliant toxicity study. Thus, the goal of this collaboration was to provide a more comprehensive dataset upon which to base safety standards and to determine whether industry-standard tests are as sensitive and predictive as molecular and disease-associated endpoints. The goal of this report is to integrate the findings from the investigator-initiated studies into a comprehensive overview of the observed impacts of BPA across the multiple organs and systems analyzed. For each organ system, we provide the rationale for the study, an overview of methodology, and summarize major findings. We then compare the results of the CLARITY-BPA studies across organ systems with the results of previous peer-reviewed studies from independent labs. Finally, we discuss potential influences that contributed to differences between studies. Developmental exposure to BPA can lead to adverse effects in multiple organs systems, including the brain, prostate gland, urinary tract, ovary, mammary gland, and heart. As published previously, many effects were at the lowest dose tested, 2.5µg/kg /day, and many of the responses were non-monotonic. Because the low dose of BPA affected endpoints in the same animals across organs evaluated in different labs, we conclude that these are biologically - and toxicologically - relevant.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Troca Materno-Fetal , Fenóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Animais , Comportamento Animal/efeitos dos fármacos , Metilação de DNA , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/crescimento & desenvolvimento , Masculino , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/crescimento & desenvolvimento , Ovário/efeitos dos fármacos , Ovário/crescimento & desenvolvimento , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Próstata/efeitos dos fármacos , Próstata/crescimento & desenvolvimento , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/crescimento & desenvolvimento , Uretra/efeitos dos fármacos , Uretra/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...